Monatshefte für Chemie 116, 761-776 (1985)

Monatshefte für Chemie Chemical Monthly © by Springer-Verlag 1985

On the Molecular Structure of the Phytochrome Chromophore: X-Ray Analysis of Two 2,3-Dihydrobilatriene-abc Derivatives*

Christoph Kratky^{a,*}, Heinz Falk^b, Karl Grubmayr^b, and Ulrich Zrunek^b

 ^a Institut für Physikalische Chemie, Universität Graz, A-8010 Graz, Austria
 ^b Institut für Analytische, Organische und Physikalische Chemie, Johannes-Kepler-Universität Linz, A-4040 Linz, Austria

(Received 13 June 1984. Accepted 12 July 1984)

The molecular and crystal structures of the two 2,3-dihydrobilatrienes-abc 1 and 2, representing model compounds for the phytochrome chromophore, were determined by X-ray crystallography at 97 K. Crystals of the racemate 1 contain disordered regions. Both molecules are found to be of all-(Z) configuration, assuming a helical conformation. The acidic hydrogen atoms are localized at the nitrogen atoms of rings A, C and D. A summary of the geometries of unsaturated five-membered rings as observed in four accurate low-temperature crystal structures of bilatrienes-abc is given.

(Keywords: Crystal structure of dihydrobilatriene-abc; Dihydrobilatriene-abc; Molecular geometry of dihydrobilatriene-abc; Phytochrome model compounds)

Zur molekularen Struktur des Phytochromchromophors: Röntgenstrukturanalyse zweier 2,3-Dihydrobilatrien-abc-Derivate

Die Molekül- und Kristallstruktur der beiden 2,3-Dihydrobilatriene-abc 1 und 2, welche Modelle für den Phytochromchromophor repräsentieren, wurden mittels Röntgenkristallstrukturanalyse bei 97 K bestimmt. Die Kristalle des Racemats 1 enthalten ungeordnete Bereiche. Die beiden Moleküle besitzen all-(Z)Konfiguration und liegen im Kristall in helikaler Konformation vor. Die aciden Wasserstoffatome sind jeweils an den Stickstoffatomen der Ringe A, C und D lokalisiert. Die in genauen Tieftemperatur-Kristallstrukturen von vier Bilatrienabc Derivaten beobachteten molekularen Geometrien der ungesättigten Heterocyclenringe werden zusammengefaßt.

^{*} Herrn Prof. Josef Schurz zum 60. Geburtstag gewidmet.

Introduction

Phytochromobilin, the chromophore molecule of the plant pigment phytochrome¹, is a linear tetrapyrrole of the 2,3-dihydrobilatriene-abc type. Although the details of its biochemical function are far from being understood, the 2,3-dihydrobilatriene-abc chromophore has recently received much attention, and much is known about its chemical properties as far as tautomeric preferences²⁻⁴, diastereomeric forms^{5,6}, and reactivity⁷ is concerned. However, to our knowledge⁸, with the exception of the two diastereomeric 3-oxo-2,3-dihydrobilatrienes **3** and **4**⁹, no crystal structure analysis of this type of chromophore has been reported so far.

In the present communication, we describe the crystal structures of compounds 1 and 2. The structure determination of 2 was undertaken after it had turned out that the crystal structure of 1 contains disordered regions. Both structures were determined at low temperature to optimize accuracy and reliability. An analysis of the temperature factors following the method outlined in a preceding communication¹⁰ will also be described for compound 2, and the geometrics of unsaturated five membered rings found in bilatrienrs-abc will be discussed.

Results and Discussion

Atomic coordinates and temperature coefficients as observed in the low-temperature crystal structures of 1 and 2 are given in Tables 1–4. Fig. 1 shows ORTEP-projections of the two molecules into a mean plane through all atoms of the bilatriene system; views perpendicular to this plane, in the direction of the C9–C11 vector, are shown in Fig. 2.

Partial disorder is observed in the crystal structure of 2, notably of the ring A substituents and of the solvated chloroform molecule. Therefore, with the exception of the three N-H protons, we did not attempt to observe H-atoms, and we also refrain from a detailed discussion of the bonding geometry for this compound. The structure of 2, on the other hand, is of high quality, which is manifested in a low residual (see Table 6) and in the fact, that all hydrogen atoms could be observed in difference *Fourier* syntheses and behaved well during least-squares refinement. The bond lengths, bond angles and a few torsion angles for the tetrapyrrolic moiety as observed in the crystal of 2 are shown in Fig. 3, which also defines the atom numbering used for the description of the crystal structure.

Both molecules assume an overall helical conformation, which has been observed for all known crystal structures of verdinoid compounds⁸. The "helix pitch" (distance between carbonyl oxygen atoms on rings A and D) is also quite in the range of what is observed in related compounds⁸ (1: 3.55 Å; 2: 3.47 Å).

Tautomerism, Hydrogen Bonding and Crystal Packing

The tautomeric form of 2,3-dihydrobilatrienes was determined using a combination of NMR and UV/VIS techniques³. Thus, in aqueous solution, three protons are bonded to the nitrogens of rings A, C and D, with the proton on the saturated ring A being the most acidic one¹¹.

The crystal structure analyses are in full agreement with the distribution of the acidic protons observed in solution: in both structures, the inner protons could be observed in difference *Fourier* syntheses and refined to a reasonable streochemistry (Fig. 3): they are attached to atoms

C. Kratky et al.:

Table 1. Atomic coordinates and (equivalent) isotropic temperature factors ($\cdot 10^3$, U-values in \mathring{A}^2) for the crystal structure of 1. E.s.d.'s are given in italics. The equivalent isotropic temperature factor was obtained as one third of the trace of the orthoganlized U_{ij} tensor, and it corresponds to an isotropic temperature factor of the form $T = \exp(-8\pi^2 \cdot u \cdot \sin^2 \vartheta/\lambda^2)$

Atom	X,	X/a		¥/Ъ		Z/c		Uiso	
		7	105	~		~		~	
C1	256	3	-125	2	248	2	34	8	
02	319	3	-208	2	336	2	4	2	
CS	451	4	-157	3	333	4	8	3	
C4	430	3	-37	2	270	2	22		
05	495	3	51	2	274	2	19	/	
C6	461	2	167	2	218	2	10	6	
C7	505	2	258	2	248	2	15	6	
CB	447	3	353	2	181	2	21		
C9	360	2	317	2	122	2	15	6	
C10	293	3	387	2	44	2	16	7	
C11	229	2	350	2	-21	2	4	5	
C12	139	2	406	2	98	2	8	6	
C13	96	2	333	2	-139	2	7	6	
C14	164	2	231	2	-93	2	7	6	
C15	138	2	1 34	2	-110	2	9	6	
C16	210	3	32	2	-81	2	17	7	
C17	172	2	-76	2	-82	2	8	6	
C18	262	2	-155	2	-30	2	7	6	
C19	360	2	-100	2	4	2	0	5	
N20	318	2	-25	2	221	2	19	6	
HN20	281	19	38	16	188	16	0	56	
N21	380	2	198	1	148	1	7	4	
N22	236	2	246	1	-23	2	6	5	
HN22	297	19	186	15	15	15	0	55	
N23	322	2	12	2	-27	2	20	6	
HN23	374	19	59	16	-21	15	3	60	
024	152	2	-130	1	214	1	26	5	
C25	233	4	-212	3	438	3	6	3	
C26	331	3	-320	2	312	3	4	2	
C27	567	4	-200	3	312	4	13	4	
C28	605	3	-315	3	395	4	7	3	
029	575	2	-354	2	483	2	5	2	
030	669	2	-376	2	332	2	5	2	
C31	705	4	-496	3	389	3	6	3	
C32	606	3	249	2	329	2	29	8	
C33	446	2	471	2	183	2	7	6	
C34	102	3	542	2	-128	2	19	7	
C35	-2	2	365	2	-219	2	5	6	
C36	50	2	-91	2	-128	2	11	6	
C37	87	3	-50	- 3	-253	3	40	9	
C38	267	3	-283	2	-4	2	15	6	
039	459	1	-146	1	51	1	2	4	
C40*	818	5	-269	4	580	6	16	6	
CL41*	903	2	-276	2	672	1	12	2	
CL42*	755	4	-102	2	525	2	14	3	
CL43*	892	2	-272	2	449	2	11	2	
CL44*	-102	3	617	3	-441	4	16	4	
CL45*	-202	5	844	3	-492	5	18	6	

Table	2.	Coordinates	and	temperature	coefficients	$(\cdot 10^4)$	for	the	non-hydrogen
				atoms in the	structure of	2			

Atom	X/a		Y/b		Z/c		Uiso	
	4565	~	0000	-		7		45
01	0720	2 7	2009	0	5708	3	204	40 54
C9	6670	5	4000 9760	7	1716	7	207	14
C4	7100	5	0/19	7	4710	7	174	40
04	7502	5	1749	7	40.50	3	170	42
CB	8118	5	1740	7	1580	3	150	40
C7	8704	5	-108	7	4000	3	178	11
CB	9162	5	-1238	7	4461	3	172	43
C9	8698	5	-1383	7	4975	3	151	41
C10	8809	6	-2444	8	5342	3	186	4.3
C11	8271	5	-2669	6	5804	3	123	40
C12	8434	5	-3667	7	6231	3	139	40
C13	7709	5	-3436	7	6587	3	149	4.3
C14	7108	5	-2326	7	6367	3	146	41
C15	6330	6	-1660	7	6612	3	147	45
C16	5631	5	-709	7	6378	3	131	42
C17	4978	5	77	7	6689	3	151	42
C18	4474	5	997	7	6308	3	139	40
C19	4746	5	837	7	5741	3	177	43
N20	7176	5	2023	6	5394	2	199	38
N21	8065	4	-275	5	5032	2	155	33
N22	7454	4	-1881	5	5887	2	162	35
N23	5480	4	-191	5	5805	2	158	32
024	6705	4	2779	5	6235	2	300	32
C25	7538	7	4745	8	4667	4	361	58
C26	5740	7	3846	8	4139	4	363	57
C27	9013	7	518	8	3659	3	227	48
C28	9855	6	-2229	8	4272	3	228	49
C29	9218	6	-4750	7	6304	3	187	46
C30	7626	6	-4258	7	7112	3	203	48
C31	4940	6	-207	7	7314	3	201	45
C32	4209	6	-1367	7	7357	3	209	47
C33	3727	6	2072	7	6386	3	230	48
034	4418	3	1469	4	5270	2	207	29
C35*	8311	6	1493	8	7297	3	359	53
CL36*	7884	2	1064	2	7945	1	373	13
CL37*	9426	2	2553	2	7486	1	390	13
CL38*	8647	2	119	2	6947	1	630	17

N 20, N 22 and N 23, and two intramolecular hydrogen bonds are formed with the imino nitrogen atom N 21 as acceptor.

Fig. 4 shows packing diagrams for the two crystal structures. Although the two compounds crystallize in different spacegroups and the packing diagrams look considerably different, the pattern of intermolecular Hbonds is quite similar: in both compounds, the ring D proton forms a Hbond to the ring D carbonyl group of a centrosymmetrically related molecule (1: H 23...O $39_{1-x,-y,-z}$, 2.03 Å; 2: H 23...O $34_{1-x,-y,1-z}$, 1.83 Å). A weaker H-bonding interaction appears to exist between H 22

C. Kratky et al.:

Table 3. Coordinates and isotropic temperature coefficients $(\cdot 10^3)$ for the H-atoms in the crystal structure of 2. Note that positional e.s.d's may be underestimated as a result of distance constraints (see text in experimental section)

Atom	X/a		Y/b		Z/c		Uiso	
		~	40.0	7	- 10	7	40	07
H1-02	643	0	499	3	040 505	5	43	21
HZ-CZ	043	2	390	/	525	3	72	24
Н -С5	763	0	208	<i>′</i>	404	3	65	23
H -CIO	929	5	-312	0	530	2	14	10
H -015	630	2	-195	0	697	3	8	17
H -N20	750	0	120	0	000	3	34	23
H -N22	724	4	-123	D C	565	2	10	18
H -N23	553	<i>'</i>	-03	8	539	4	70	30
Щ-C25	788	2	400	-	428	2	30	22
H2-025	823	5	472	2	506	2	40	24
H3-C25	724	5	574	2	400	3	18	20
HI-026	604	5	30%	1	370	2	39	24
H2-C26	530	0	470	4	404	4	72	29
H3-C26	506	4	325	D C	420	2	00	20
H1-C27	826	5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0	334	2	26	19
H2-027	938	5	148	5	379	5	29	21
H3-C27	955	4	9	0	34%	2	00	20
H1-028	1025	5	-179	7	395	3	91	20
H2-C28	943	4	-313	5	413	2	33	79
H3-C28	1055	4	-200	0	40%	2	00	32
H1-C29	001	5	-009	5	022	5	04	24
H2-C29	968	4	-482	0 7	677	1	9	1/
H3-C29	968	5	-476	-	597	2	37	24
	749	10	-358	5	744	2	000	21
HZ-C30	724	12	-019	9 7	695	0	212	09
H3-C30	837	2	-400	~	743	2	40	23
H1-C31	572	2	-33	0	763	2	18	10
H2-C31	470	4	03	5	704	2	0	1/
HI-C32	419	4	-156	2	781	1	14	10
H2-C32	448	5	-230	5	722	5	42	22
ng-C32	337	2	-121	0	712	2	41	20
H1-C33	406	4	300	3	630	2	19	17
HZ-C33	354	2	212	6	082	1	34	24
H3-C33	296	5	215	b	605	2	54	19
н -С35*	759		181	9	694	4	106	36

and the symmetry related ring D carbonyl oxygen atom (of length 2.55 Å in 1 and 2.60 Å in 2). This pattern of intermolecular H-bonds leads to the same type of centrosymmetric dimer as observed in the (Z)-isomer of the 3-oxo-2,3-dihydrobilatriene 3 described in the preceding communication⁹.

In 2, the solvated chloroform molecule is H-bonded to the ring A carbonyl oxygen (H-C35...O24, 1.95 Å). In 1, the chloroform molecule is disordered, prohibiting localisation of its proton. However, judging from the packing diagram (Fig. 4), it is probable that the chloroform is hydrogen-bonded to the ester carbonyl oxygen atom O 29.

Table 4. Anisotropic temperature coefficients $(\cdot 10^4, in \mathring{A}^2)$ for the non-H atoms in the structure of **2**. The temperature factor has the form: $T = \exp(-2\pi^2(h^2a^{*2}u_{11} + ... + 2hka^*b^*u_{12} + ...))$

Atom	ul i	u 22	u33	u12	u13	u23
C1	149 43	2 4 9 <i>48</i>	221 <i>39</i>	9 38	61 35	67 35
C2	365 57	188 50	312 46	25 48	67 44	-73 41
C3	181 44	173 45	256 40	-125 39	34 <i>35</i>	-34 36
C4	218 43	1 39 42	153 <i>3</i> 5	-20 39	26 33	-10 36
C5	361 50	1 03 42	116 <i>3</i> 7	-37 39	138 <i>3</i> 7	57 <i>34</i>
C6	204 43	122 40	1 35 <i>3</i> 5	-74 37	14 34	-41 32
C7	163 43	1 99 46	174 37	-120 39	48 34	-34 35
C8	192 44	211 45	79 34	-33 38	29 33	-1 34
C9	178 42	120 41	1 54 36	80 35	38 32	-23 33
C10	207 44	173 43	179 37	1 41	52 35	-52 38
C11	225 43	32 39	116 33	-47 35	51 33	-47 32
C12	132 41	103 <i>39</i>	179 <i>36</i>	-19 36	33 <i>33</i>	-34 32
C13	166 44	1 50 42	124 <i>37</i>	7 37	23 34	16 32
C14	139 41	1 34 42	177 35	59 38	61 34	7 35
C15	177 46	1 85 45	1 03 <i>38</i>	-49 38	78 36	26 35
C16	59 <i>39</i>	157 43	1 82 38	22 35	39 <i>33</i>	22 <i>33</i>
C17	109 42	202 45	1 24 34	-43 38	-2 32	28 <i>34</i>
C18	152 40	145 40	117 35	5 38	28 32	-42 34
C19	95 41	1 93 44	227 39	44 36	11 <i>35</i>	-34 35
N20	19 5 <i>38</i>	202 <i>38</i>	1 88 <i>32</i>	52 31	27 29	36 28
N21	116 33	175 33	178 <i>28</i>	-49 28	42 26	-65 27
N22	166 <i>35</i>	148 34	1 83 31	44 29	67 28	27 28
N23	208 <i>33</i>	175 32	97 28	38 29	49 26	-22 27
024	297 31	383 <i>34</i>	214 26	44 28	52 25	26 25
C25	420 60	308 54	399 52	117 50	186 47	-4 4 47
C26	377 59	230 52	403 52	1 B4 50	-45 46	-29 45
C27	298 50	221 47	180 40	26 42	96 38	56 <i>3</i> 7
C28	236 49	252 49	257 43	-58 40	173 40	-90 38
C29	141 4 5	245 47	177 39	49 <i>39</i>	44 34	22 <i>37</i>
C30	190 47	220 49	222 42	58 41	96 <i>38</i>	16 <i>37</i>
C31	231 46	1 9 2 44	206 <i>39</i>	43 42	101 <i>38</i>	44 <i>3</i> 7
C32	301 50	259 48	84 <i>36</i>	-11 43	82 37	66 3 5
C33	217 49	218 47	266 42	129 40	B2 40	-16 <i>38</i>
034	237 29	255 31	1 22 23	11 26	34 21	3 23
C35*	242 48	84 7 <i>6</i> 5	1 92 38	13 47	63 <i>37</i>	-183 43
CL36*	322 12	471 14	357 11	17 12	145 10	13 11
CL37*	618 <i>15</i>	249 11	335 10	38 12	179 11	9 10
CL38*	420 14	653 18	931 18	-255 14	379 14	-614 15

Five Ring Conformation

The planarity of pyrrole and pyrrolenine rings is as found in related structures⁸⁻¹⁰. The deviations from a least squares plane for the pyrrolidine ring are considerably different for 1 and 2; when expressed in terms of the established description of a pseudorotating pentagon¹², the puckering amplitude is 0.19 Å in 1 and 0.08 Å in 2. The former value, which stems from a ring with a distribution of temperature ellipsoids

Fig. 1. ORTEP drawing (50% probability) of the tetrapyrrole moiety, projected approximately into a mean plane, as observed in the crystal structures of 1 (left, with atom numbers for the substituent atoms) and 2 (right). The radii of hydrogen atoms were arbitrarily set to 0.1 Å; note, that the radii of atoms C 19 and O 39 in 1 were also set to 0.1 Å

Fig. 2. Projection of 1 (left) and 2 (right) in the direction of the C9-C11 vector

Fig. 3. Bond lengths, bond angles and $C_{\alpha} - C_m$ dihedral angles (underlined) from the crystal structure of **2**. Standard deviations are as follows: X - Y, $\sigma \sim .008 - .012$, N-H, $\sigma \sim 0.06$ Å; X - Y - Z, $\sigma \sim 0.4 - 0.7$; X - N - H, $\sigma \sim 3.6 - 4.2$ Å (X, Y, Z = C, N, O, Cl)

(Fig. 1) provoking the suspicion of disorder, has to be treated with caution; however, the suspected disorder is more likely to decrease the observed puckering amplitude than to increase it, so that we have to regard the value of 0.19 Å as a lower limit for the puckering amplitude of 1.

Both values lie within the range of puckering amplitudes observed in 18 pyrrolidine rings^{12,13} with exocyclic double bonds in positions 2 and 5. The difference in puckering amplitudes between the two structures are probably caused by the differences in pyrrolidine ring substitution; the value found in **1** is to be compared with values for identically substituted pyrrolidine rings in the (*E*)- and (*Z*)-isomers of 5^{10} , where puckering amplitudes of 0.29 Å were observed. For the reasons outlined above, the discrepancy is not necessarily of physical significance.

⁵² Monatshefte für Chemie, Vol. 116/6–7

Fig. 4. Packing diagrams for 1 (top) and 2 (bottom). The orientation of crystal axes in both cases is as follows; X back to front; Y left to right; Z upwards

The large differences in the puckering amplitudes indicate, that (saturated) pyrrolidine rings in such compounds are instrinsically almost planar, but they can easily be deformed to considerable puckering by appropriate vicinal substitution.

Analysis of Temperature Factors

The analysis of temperature factors along the lines described previously¹⁰ leads to a very clear-cut result when applied to the u_{ij} -values from the structure of **2**: the halve normal probability plots (Fig. 5) demonstrate, that detectable non-rigidity exists only within ring A and its substituents. It is instructive to compare the results on **2** with those

reported previously for 4 and the (E) and (Z) diastereomers of 5: in all four compounds, the pyrrolidine rings show internal flexibility at comparable levels of significance. While, for 4, we reported some indication for relative flexibility between rings A and D⁹, no such indication can be detected for 2. A conclusive evaluation of these results can not yet be given at this point.

Bonding Geometry in Bilatrienes

Previous high accuracy structure determinations (low temperature, all protons refined) of verdinoid compounds involved the structures of 3^9 , 4^9 and 6^{8a} . We shall use the geometries of these three compounds and the one of **2** (Fig. 3) to analyze some aspects of the bonding geometry of bilatrienes.

A notable common feature of the three dihydrobilatrienes 2, 3 and 4 is the fact that in all three compounds, the exocyclic double bond at ring D is longer than the one at ring A. This is somewhat in contrast to the chemical evidence, which yields a lower thermal isomerization barrier for the ring A double bond⁶.

In discussing structures 3 and 4^9 , we noted the difference in tautomeric forms within the pyrromethene fragment as the dominating effect on the bonding geometry, most of which can be rationalized by considering the canonical representation of the chemical formula. The following discussion will consequently be based on a comparison of structural fragments with identical canonical formula.

There are three different kinds of unsaturated five membered rings in the four structures, each kind of ring occurs once in each compound. The three ring types are listed in Table 5, together with a set of "best" bond lengths and -angles obtained by averaging the appropriate geometrical parameters from the four structure determinations. Ring type 1 occurs as ring D in all four compounds, whereas types 2 and 3 are found either as ring B or C; the correct identification between ring type and position in each of the four structures is also given in Table 5.

The remainder of Table 5 is devoted to root mean square deviations (r.m.s.d.'s) between bonding parameters observed in the four crystal structures and the mean values. The r.m.s.d.'s are given separately for bondlengths (BL) and bond angles (BA) within the five-membered rings (*endo*) and for parameters involving C_m atoms (*exo*).

All in all, the r.m.s.d.'s justify the classification into ring types of different canonical formula. However, several of the r.m.s.d.'s are beyond experimental error, some of which not readily interpretable. We only list a few factors influencing the molecular geometry:

Hydrogen Bonding: basically, two types of H-bonding are observed in the four structures: the pattern found in 2 and 3, and the one found in 4

 Table 5. Geometrical parameters for the three ring types; further explanations are given in the text

Cor	npound	2	3	4	6
F1 BL	ring endo exo	D . 015 . 009	D . 013 . 015	D . 009 . 005	D . 008 . 015
BA	endo exo	. 82- 1. 02	1. 02 . 68	. 81 1. 18	. 76 . 73
F2 BL BA	ri ng endo exo endo exo	B . 012 . 010 . 47 . 73	B . 010 . 005 . 27 . 76	C . 002 . 003 . 51 1. 23	C . 005 . 010 . 25 . 42
F3 BL	ri ng endo exo	C . 008 . 011	С . 010 . 011	B . 004 . 005	B . 005 . 004
BA	endo exo	.67 .91	. 66 1. 64	. 52 . 83	. 19 1. 39

and 6. The two patterns differ with respect to the fate of the ring D proton, which is involved in intermolecular H-bonding in 4 and 6. The effect on the bonding geometry of ring D is quite notable: the endocyclic ring D geometries agree well between 4 and 6, whereas the two compounds with intermolecular H-bonds agree less well with each other and show larger deviations from the mean geometries.

Steric Effects: some geometrical consequences of steric effects were already discussed in conjunction with the structures of 3 and 4^9 ; the main

effects are observed at the exocyclic bond angles and at the C_m bond angles. The effect on exocyclic bond angles is manifested by their larger r.m.s.d.'s compared with the endocyclic ones. However, exocyclic bond angles are also likely to be affected by intramolecular H-bonding, and the two effects (H-bonding and steric effects) are difficult to separate.

Rotation about Exocyclic Bonds: one might expect that an increase of the dihedral angle about one of the exocyclic bonds would be accompanied by an increase in the corresponding bondlength. Such an effect cannot be observed in the four structures. Neither do exocyclic bondlengths preferentially show larger r.m.s.d.'s than endocyclic ones, nor can one find correlations similar to the one reported for dihydropyrromethenones¹⁰. It is very likely that a dependence between bondlength and dihedral angle does exist for the $C_{\alpha} - C_m$ bonds, but in the present structures this appears to be clouded by other effects with larger geometrical consequences.

Experimental

Both compounds were crystallized from chloroform/*n*-hexane, but the procedure adopted differed slightly between the two. For 1^2 , a small amount of material (less than 1 mg) was suspended in about 1 ml of *n*-hexane. Chloroform was added until all material was dissolved. Compound 2^{11} was directly dissolved in chloroform. Both solutions were placed in a dessiccator containing *n*-hexane and left in the coldroom for several weeks, whereupon small crystals appeared.

All X-ray work was carried out on a locally modified STOE 4-circle diffractometer (MoK_a-radiation, graphite monochromator, $\lambda = 0.71069$ Å) equipped with a NONIUS low temperature attachment. The whole diffractometer is placed inside a glove box to minimize the formation of ice on the crystal. Relevant experimental conditions and a summary of the results of structure refinements are given in Table 6.

Data processing involved the usual merging of multiply recorded and symmetry-related reflections and LP-corrections. No absorption- or extinction corrections were applied $[\mu (MoK_{\alpha}) = 3.24 \text{ cm}^{-1} \text{ for } \mathbf{1} \text{ and } 3.47 \text{ cm}^{-1} \text{ for } \mathbf{2}]$. The structures were solved by direct methods and refined by least-squares techniques; in the final cycles, computer limitations forced a blocking of the least-squares matrix.

During the refinement of 1, it soon turned out that the structure suffers from partial disorder. The small number of significant reflections prohibited the refinement of anisotropic temperature factors for all atoms; therefore, only atoms C 2, C 3, C 25–O 31 were refined anisotropically, for all other atoms, only isotropic temperature factors were determined. Non-positive definite temperature coefficients resulted for atoms C 26, C 28 and O 30. With the exception of H (N 20), H (N 22) and H (N 23), which were included at observed positions and subjected to unconstrained, isotropic refinement, no H-atoms were included. The region of the solvated chloroform molecule showed several residual peaks, indicating considerable disorder. After numerous attempts to explain the electron density in this region in terms of two superimposed CHCl₃ molecules, the density was eventually fitted by five anisotropic "atoms" with site occupation factors of 0.8 (Cl 41), 0.7 (Cl 42 and Cl 43) and 0.4 (Cl 44 and Cl 45).

	1	2
chemical formula	C ₃₁ H ₃₈ N ₄ O ₄ · CHCl ₃	C ₂₈ H ₃₄ N ₄ O ₂ ·CHCl ₃
crystal size [mm]	$0.05 \times .05 \times .2$	$.05 \times .2 \times .3$
temperature [K] (cold stream)	97 ± 1	96 ± 1
space group	ΡĪ	$P 2_1/c$
cell dimensions a [A]	10.084(3)	12.802(1)
b[A]	12.781 (2)	10.286(2)
cĪAĪ	13.671 (5)	23.082 (8)
α[́°]	70.84(1)	90
βΰĪ	81.27 (1)	104.71(1)
y [~]	83.86 (1)	90
V Ā ³ 7	1 642.0	2939.8
number of molecules per unit cell	2	4
calculated density $[g cm^{-3}]$	1.315	1.306
number and θ -range [°] of reflections	20	33
used to refine cell constants	$7 \leq 2\theta \leq 16$	$17 \leq 2 \theta \leq 21$
limits for data collection [°]	$0 \leq 2 \theta \leq 50$	$0 \le 2\theta \le 50$
	$-11 \leq h \leq 11$	$0 \le h \le 15$
	$-15 \leq k \leq 15$	$0 \leq k \leq 12$
	$0 \leq 1 \leq 16$	$-27 \leqslant 1 \leqslant 27$
scan width [°] (ω/θ -scan)	1.5	1.2
number/frequency of standard refs.	2/100	2/100
max. variation of standard intensities	+ 4%	+3%
number of observed reflections	6163	6155
number of independent reflections	5 773	5176
number of reflections with $ F_{0} > 4\sigma(F_{0})$	1 0 2 6	1836
R/R _w -factors	0.117	0.056/0.047
number of parameters	368	483
number of observations		
(including distance constraints)	1 0 2 6	1864
weighting system	unit weights	$1/\sigma^2$ (F _i)
highest peak/lowest trough in		
final $\Delta \hat{\mathbf{F}}$ -Fourier synthesis [eA ⁻³]	0.6 / - 0.5	0.3 / - 0.4

Table 6. Summary of experimental conditions

The refinement of 2 was considerably less problematic: all non-hydrogen atoms were refined with anisotropic temperature factors, while hydrogens were refined with isotropic temperature factors. All C – H bonding distances involving sp³-hybridized carbon atoms were constrained to 1.09 Å.

The computer programs used (some in locally modified versions) are summarized in Ref.¹⁴.

Acknowledgement

C. K. acknowledges support from the Österreichischer Fonds zur Förderung der wissenschaftlichen Forschung (Project No. 3763 and 4873), the Österreichische Akademie der Wissenschaften and the Jubiläumsfonds der Oesterreichischen Nationalbank (Project No. 2214). H. F. acknowledges support within Project No. 4606 from the FFWF.

776 C. Kratky et al.: Molecular Structure of the Phytochrome Chromophore

References

- ¹ For reviews see: Photomorphogenesis, Encyclop. Plant Physiol. 16 (1983).
- ² Falk H., Grubmayr K., Magauer K., Müller N., Zrunek U., Isr. J. Chem. 23, 187 (1983).
- ³ Falk H., Zrunek U., Monatsh. Chem. 114, 983 (1983).
- ⁴ Falk H., Grubmayr K., Müller N., Vormayr G., Monatsh. Chem., in print.
- ⁵ Falk H., Grubmayr K., Kapl G., Müller N., Zrunek U., Monatsh. Chem. **114**, 753 (1983).
- ⁶ Falk H., Kapl G., Müller N., Monatsh. Chem. 114, 773 (1983).
- ⁷ Falk H., Zrunek U., Monatsh. Chem. 115, 101 (1984).
- ⁸ For summaries of X-ray crystallographic work on polypyrrolic compounds see: a) Kratky C., Jorde C., Falk H., Thirring K., Tetrahedron **39**, 1859 (1983) and b) Sheldrick W. S., Isr. J. Chem. **23**, 155 (1983).
- ⁹ Kratky C., Falk H., Grubmayr K., Monatsh. Chem. 116, 745 (1985).
- ¹⁰ Kratky C., Falk H., Zrunek U., Monatsh. Chem. 116, 607 (1985).
- ¹¹ Falk H., Zrunek U., Monatsh. Chem. 114, 1107 (1983).
- ¹² Dunitz J. D., X-Ray Analysis and the Structure of Organic Molecules. Cornell University Press. 1979.
- ¹³ Allen F. H., Kennard O., Taylor R., Acc. Chem. Res. 16, 146 (1983); Kratky C., Bernhard H., Fakten, Daten, Zitate 1984 (1), 6.
- ¹⁴ Sheldrick G. M., SHELX 76, a program for crystal structure determination, University of Cambridge, England; Stewart G. M., The XRAY system version of 1976, TR-466, CSS, University of Maryland, U.S.A.; Motherwell S., program PLUTO, University of Cambridge, England; Johnson C. K., ORTEP report ORNL 5138, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. (1976).